最新创建圈子
我国清洁供暖技术现状、问题与解决路径
01区域供热技术发展历程
02我国清洁取暖的相关政策
清洁取暖是指利用天然气、电、地热、生物质、太阳能、工业余热、清洁化燃煤(超低排放)、核能等清洁化能源,通过高效用能系统实现低排放、低能耗的取暖方式。清洁取暖包含以降低污染物排放和能源消耗为目标的取暖全过程,涉及清洁热源、高效输配管网(热网)、节能建筑(热用户)等环节。清洁取暖的主要方式包括清洁燃煤供暖、天然气供暖、电制热供暖、可再生能源供暖和工业余热供暖等。
近年来,我国政府相继出台了一系列有关供暖的相关政策文件。2006年,国务院出台了《国务院关于加强节能工作的决定》,指出供暖要商品化,按用热量计量收费。同年,财政部印发《可再生能源建筑应用专项资金管理暂行办法》,明确提出支持利用可再生能源进行采暖制冷,包括利用热泵技术等。国家能源局于2007年发布的《能源发展“十一五”规划》指出从分布式锅炉转变为集中供暖,以及新建热电联产节能标准;2013年发布的《能源发展“十二五”规划》要求发展天然气热电联产、热力网建设等;2017年发布的《能源发展“十三五”规划》提出推广热电冷三联供和生物质热电联产、地热能供暖、低品位余热供暖等。
推进北方地区清洁取暖工作已成为中央提出的一项重要决策部署。尤其进入“十三五”后,《北方地区冬季清洁取暖规划(2017—2021年)》《关于推进北方采暖地区城镇清洁供暖的指导意见》《清洁能源消纳行动计划(2018—2020年)》《打赢蓝天保卫战三年行动计划》《绿色产业指导目录(2019年版)》等相关政策文件的密集推出,也彰显了国家大力发展清洁取暖工作的决心与信心。
03我国清洁供暖技术现状
地热供暖
地热供暖指利用地热资源,使用换热系统提取地热资源中的热量向用户供暖,可作为集中式或分散式供暖热源。按照埋存深度和温度等级,地热供暖可分为浅层地热资源、水热型地热资源和干热岩型地热资源。目前,浅层和水热型地热能供暖(制冷)技术已基本成熟——浅层地热能采用热泵技术提取热量,而水热型地热能通过人工钻井或天然通道开采利用;干热岩型地热能开发尚处于起步阶段,我国2012年才启动关于干热岩热能开发与综合利用技术的专项研究。地热与调峰锅炉联合供暖系统(图5)是地热供暖的典型方式。
工业余热供暖
工业余热供暖指回收工业生产过程中伴生的余热,经换热装置提质后进行供暖的方式。与燃煤供暖、天然气供暖、电制热供暖相比,工业余热供暖在技术及经济上均具有较好的可行性。但工业余热种类繁多,其数量和形态在时间或空间上也常具有不确定性,囿于传统余热回收技术水平,难以被高效利用。而储热技术的优势,恰恰能够缓解能量供需双方在时空、强度与地域上不匹配的矛盾。将储热技术与工业余热清洁供暖技术有机结合,可进一步提升余热转换效率。可移动式工业烟气余热储热供暖(图7)是该技术的典型代表之一。
核能供热前景广阔,近年来核能供暖产业已在我国北方地区积极推进。中国核工业集团、中国广核集团、国家电力投资集团及清华大学等单位已经在黑龙江、吉林、辽宁、河北等多个省份开展了相关厂址普选与产业推广工作。
03我国清洁供暖存在问题与解决路径
存在问题
清洁取暖科学评价指标有待统一
清洁取暖技术种类较多,百花齐放,但评价指标一直无法统一,缺乏普适性。有些指标过于简单,只关注其经济性指标,往往忽略取暖方式是否与当地的能源布局及生态环境相适应等问题;有些指标过于繁冗,需要建立复杂的数学模型,可操作性不强。这就使得清洁取暖技术市场鱼龙混杂,很难以统一标准衡量某项技术的优劣。
供热管网与现有建筑物能效水平有待提升
供热管网。目前,我国城镇集中供热管网总里程已达到48.8万公里,其中75%为城市集中供热管网,但室外管网的输送效率仅为70%。究其原因:硬件设施方面,供热管网的结构布局不合理,支状管网较多,导致管网水力失调问题严重。再者,部分老旧管网因运行维护不到位,“跑冒滴漏”等问题严重,还有管网凝结水问题、管网保温问题等,这些都可造成整个供热管网的输送效率下降;软件设施方面,供热系统的调控技术水平落后,因大部分热网末端热用户未采用实时热计量措施,使得现有的供热系统只是对设备的粗放型调节,无法根据热用户的需求对整个供热系统进行精准调控,导致管网过量供热或供热不足现象时有发生。
现有建筑物。维护结构保温性能差的问题普遍存在;因受经济发展及保温改造成本的影响,小城镇和广大农村地区问题尤为严重。例如:外墙无保温;窗户为单层玻璃;门窗缝隙漏风严重等。这些都会导致建筑物室内能耗增加,难以满足节能建筑的要求。
多方共赢长效机制有待建立
目前,清洁取暖改造资金主要来自3个方面:中央财政试点城市奖补资金、地方财政补贴资金、社会资本投入。随着2019—2020年采暖期的结束,天津、唐山、石家庄等第一批北方地区清洁取暖试点城市3年示范期也将结束,清洁取暖工作将面临最终考核,而考核结果将直接关系到试点城市能否足额领取奖励资金。天津和济南已经宣布要延长清洁取暖运行补贴至2022—2023年采暖期结束,而唐山表示将分3年逐步取消运行补贴,其他城市尚未明确后续政策。
从清洁取暖试点城市情况看,即使存在补贴,其运行费用仍然比传统散煤取暖方式高。如果清洁取暖补贴逐步取消,后续工作如何展开将是一个棘手的问题。虽然河北省张家口市可再生能源示范区探索了一条“政府+电网+发电企业+用户侧”共同参与的“四方协作”发展之路,但有其特殊背景——张家口市域内蕴含丰富的风能、太阳能和生物质能等资源,为可再生能源开发与应用提供了良好的基础,这也是“四方协作”机制成功建立的关键点之一,但不具备全国大范围推广可行性。如何建立一套多方共赢的长效机制,是解决清洁取暖用户端长期可持续的关键所在。
解决路径
逐步建立清洁取暖科学评价体系
科学的清洁取暖评价体系需要相关的科研单位和供热企业联合攻关。应针对当前多种清洁取暖技术的优缺点,秉承“科学性、先进性、协调性、可操作性”的理念,将热力学、热经济学、环境经济学等相结合。从全生命周期角度,建议主要考察3个方面指标。
能效指标。因燃煤、天然气、电能、地热能、生物质能、太阳能、工业余热、核能等能量品位高低不同,传统的分析和能级平衡理论无法充分考虑能量转换环节的转换效率,只能说明输入能量和用户之间的能量品质的差异。为此,江亿等提出了能质系数的概念,即不同能源对外所能做的最大功与其总能量的比值。利用能质系数的概念,可更合理地反映各种形式能量品位的高低。电能的品位最高,可完全转换为功,能质系数为1;其他能量形式的能质系数要根据实际对外做功的能力来分别确定。若达到同等的用户采暖要求,从节能角度考虑,采用能质系数较低的能量形式更为可取。
经济指标。在进行不同能量形式的热源供暖系统经济性评价时,除了需要考虑初投资及后期的运行与维护费用外,还要结合热经济学结构理论,将总成本分摊在供暖系统或供暖装置的全生命周期之内,考察构成系统或装置的各个组件的单位成本,以获得系统或装置的平均成本。若达到同等的用户采暖要求,从经济性角度考虑,平均成本较低的供暖系统或装置性能更优。
环境影响指标。针对不同能量形式的热源供暖系统对环境影响的程度不同,需要在同一个供暖周期内开展,不仅要考虑CO2、SO2、NOx等污染物的影响,还要考虑构成系统或装置的各个组件自身材料对环境的影响(如组件自身材料材质是否有毒有害、是否可循环利用等),之后才能测算出系统或装置的单位环境影响因子。若达到同等的用户采暖要求,从环境影响角度考虑,单位环境影响因子较低的供暖系统或装置将成为首选。评价指标的好坏需要经受实践的检验,并要不断进行修正与完善。
有序推进供热管网节能改造及采暖末端能效提升
受传统供热模式限制与改造费用的多重影响,供热管网节能改造和采暖末端能效提升不是一蹴而就的事情,需要重点突破,有序推进。针对供热管网的主要问题,先要进行性能评估,再寻求与清洁取暖技术最相适应的节能改造方案。针对建筑物维护结构保温性差的问题,优先改造能耗高、问题凸显的房屋,并鼓励探索政府、用户和供热企业三者共同分享成本与收益的新模式。这些工作将为后续智慧供热技术的全面展开提供有力的硬件支撑。
积极探索多方共赢长效机制
当前,清洁取暖市场化机制尚未建立,主要依赖政府直接投入,这就导致清洁供热项目盈利水平较低,市场积极性不高。为打破这种僵局:政府可开展相应的顶层设计与协调,消除体制障碍,根据各个城市与地方的特点,选择适用的清洁取暖技术,编制相应的技术指南,优化供暖规划;地方政府宜出台配套的政策措施,因地制宜,因时制宜,引导当地供热企业、投融资企业、热用户等积极参与清洁供热项目,探索新型的多方共赢机制,激活潜力市场。